

A Complementary Study of Elite Fencing Tactics Using Lag Sequential, Polar Coordinate, and T-Pattern Analyses

Xavier Iglesias¹, Rafael Tarragó², Daniel Lapresa³, M. Teresa Anguera⁴

 ¹INEFC-Barcelona Sport Sciences Research Group, Institut Nacional d'Educació Física de Catalunya - INEFC (University of Barcelona)
 ²Grupo de Investigación Social y Educativa de la Actividad Física y el Deporte (GISEAFE) -INEFC – (University of Barcelona)
 ³Department of Educational Sciences (University of La Rioja)
 ⁴Department of Behavioural Sciences Methodology (University of Barcelona)

https://www.flickr.com/photos/plashingvole/7748302988/in/photostream/

Sequentiality: ¿a complementary vision of reality?

Anguera and Sánchez-Algarra (2014)

FENCING PHRASE (definition)

Objectives:

In the first case, the objective is to determine what happens within each fencing phrase

- - A

1-++

In the second case, the objective is to determine how these fencing phrases evolve throughout the bout

SOT

NCE 1853

ROBE

Design	Observational	Nomothetic Point Multidimensional
--------	---------------	---

Observational tool ESGRIMOBS (Tarragó, et al., 2015)

Method

Recording and coding LINCE v. 1.1

Reliability of the dataset

0,71 intra / 0,74 inter Construct validity: 17 fencing masters -canonic agreement of 0.81 (Krippendorf, 2004)-

Sample

4 last bouts (Round of sixteen, quarter-finals, semi-final and final)
a) World champion in 2014 (Fencer on the right)
b) Sub-champion of the World in 2013 (Fencer on the left)

Fuente: https://www.flickr.com/photos/plashingvole/7748301328/in/photostream/

Observational tool
ESGRIMOBS
(Tarragó, et al., 2015)

Dimensions or criteria	Category systems	Code
Pressure	Right pressure	PD
	Left pressure	PI
A STREET, ST.	No pressure	NP
Preparation	Right preparation	XD
	Left preparation	XI
1 st Action	1st action: right offensive	OD
	1st action: left offensive	01
	1rt action: right defensive	DD
	1st action: left defensive	DI
2 nd Action	2nd action: right offensive	DOD
	2nd action: left offensive	DOI
	2nd action: right counteroffensive	DCD
	2nd action: left counteroffensive	DCI
	2nd action: right defensive	DDD
	2nd action: left defensive	DDI
3 rd Action	3rd action: right offensive	TOD
	3rd action: left offensive	ΤΟΙ
	3rd action: right counteroffensive	TCD
	3rd action: left counteroffensive	TCI
	3rd action: right defensive	TDD
	3rd action: left defensive	TDI
Touch	Left touch	TI
	Right touch	TD
	No touch	NT
	Double touch	DT

T-Patterns analysis (THEME)

Lag sequential analysis (GSEQ)

Polar coordinate analysis (HOISAN)

Analysis

T-Patterns analysis (THEME)

The assumption underlying the T-pattern detection method is that complex human behaviors have a temporal structure that cannot be fully detected through traditional observational methods or mere quantitative statistical logic.

Taken from Magnusson (2013)

A T-pattern is a "statistical construction" that is detected from a combination of events, occurring in the same order with temporal distances between each other that remain relatively invariant in relation to the null hypothesis that each registered behaviour code is independent and is randomly distributed in time.

According to Magnusson (2000, p. 94), "that is, if A is an earlier and B a later component of the same recurring temporal pattern then after an occurrence of A at t, there is an interval [t+d1, t+d2](d2≥d1≥d0) that tends to contain at least one occurrence of B more often than would be expected by chance".

	А		В	Theme 6 Educational Beta
1	Time	Event fencing	g phrases	
2	1	:		1 mas
3	2	PI,XI,OD,DCI,TDD		
4	3	PI,XD,DI,DDD,TI		
5	4	PI,XI,DD,DDI	detecti	ontribution of THEIVIE is the
6	5	NP,OI,DDD		the or the the
7	6	PI,XI,OD,DCI,TDD		
8	7	PI,XD,OI,DDD,TCI,TI	The coftw	V are also allows the possibility
9	8	PI,OI,DDD	of focusing	g its analysis on the detection
10	9	PI,XD,OI,DDD	of seque	ntial structures in a data set
11	10	PI,XI,OD,DDI,TD		Lapresa, et al.(2013)
12	11	PI,XI,OI,DDD		
13	12	PI,OI,DCD,TDI		
14	13	PI,XI,OD,DDI,TDI		
15	14	PI,OI,DDD		
16	15 🕴	PI,XI,OI,DOD,TID		

Lag sequential analysis (GSEQ)

Lag sequential analysis (Bakeman and Quera, 2011) was used to investigate association relations between categories based on the calculation of observed and expected probabilities, , and to compare them using a corrected binomial test.

<u>Adjusted residuals</u> were calculated to determine the strength of association between behaviors, as we applied the correction established by Allison and Liker (1982) to the binomial test.

7 2	number of rows (givens) number of columns (targets)
(ro	observed joint frequency for cell in <i>r</i> -th row and <i>c</i> -th column of a R × C table
(+c (r+ V = x++	sum of the counts in the <i>c</i> -th column sum of the counts in the <i>r</i> -th row number of counts total for the R × C table
D _e D _r	probability for the <i>c</i> -th column = $x_{re} + N$ probability for the <i>r</i> -th row = $x_{re} + N$
nc .	expected frequency, by chance = $p_{+c} \times x_{r+}$
h r 0	code for the <i>r</i> -th row (the given) code for the <i>c</i> -th column (the target)
P(t _c g,)	conditional probability of $(t_c \text{ given } g_t) = x_{rc} + x_{r+1}$
/re	raw residual = $x_{rc} - e_{rc}$
10	adjusted residual = $\frac{X_{re} - \theta_{re}}{\sqrt{\theta_{re}(1 - p_{e})(1 - p_{e})}}$

Bakeman and Quera (2011, p. 105)

Drawing from the experience of many studies conducted in the behavioral and social sciences (Lapresa, Arana, Anguera and Garzón, 2013), it was decided to use just ten lags (lag -5 to lag -1 and lag +1 to lag +5), as patterns appear to become diluted when more are used.

11111

Lag sequential analysis (GSEQ)

Polar coordinate analysis (HOISAN)

Polar coordinate analysis is an elaborate data reduction technique. It also produces a vectorial image of the complex network of interrelations between the focal behavior, and the other behaviors selected.

The retrospective, or "backward" perspective, which incorporates what Anguera (1997) referred to as the concept of "genuine retrospectivity", reveals significant associations between the focal behavior and behaviors that occur before this behavior (i.e., negative lags).

Length of the vector

Is obtained by calculating the square root of the prospective Zsum added to the square root of the retrospective Zsum: $\sqrt{X^2 + Y^2}$. The angle of the vector

 $(\phi = \arcsin \phi Y/radius).$

The value of the angle will depend on the quadrant in which the conditioned category is located:

The relationship is considered significant (p<0.05) when the length exceeds 1.96.

- Quadrant I ($0 < \phi < 90$) = ϕ - Quadrant II ($90 < \phi < 180$) = $180 - \phi$ - Quadrant III ($180 < \phi < 270$) = $180 + \phi$ - Quadrant IV ($270 < \phi < 360$) = $360 - \phi$

Results

Sub-champion of the World in 2013 (Fencer on the left)

1 1 1 1 10

Total: 44 categories, 122 events-type= fencing phrase-types , 180 events= fencing phrases recorded.

Bout 1: 24 categories, 34 eventstype= fencing phrase-types, 40 fencing phrases

Bout 3: 32 categories, 40 fencing phrases-types, 54 fencing phrases

Bout 2: 31 categories, 33 fencing phrases-types, 41 fencing phrases

Bout 4: 35 categories, 39 fencing phrases-types, 45 fencing phrases

N⁰	Chain format pattern	Occ.	Bout	Fencing	Fencing	Theme 6
\wedge				phrases	phrases	Educational Beta
				intra-bout	interspersed	Sub-champion of the World in
L1	(np,xd,oi,ddd,ti pd,xd,oi)	2	3 3	42-43 52-53	-	2013 (Fencer on the left)
	(np,xi,od,dci,td np,xi,od,ddi,tdd)	2	¥	1-4	2	T-Patterns detected
			1	33-34	-	The second se
L3	(pd,xd,oi,ddd_pd,xd,od,dci,td)	3	2	22-23	-	
	VIDEO		2	34-37	2	
			3	49-51	1	
L4	(pd,xi,od,ddipd,od,ddi)	2	3	5-6	-	
			3	11-12	-	
L5	(pd,xi,od,ddipd,xi,od,ddi)	4	3	5-7	1	
			3	7-10	2	
			3	10-11	-	
			3	11-16	4	
L6	(pi,xd,od,dci,td pi,xi,od,ddi)	2	1	22-24	1	
			4	12-14	1	Dendrogram corresponding to <u>T-pattern</u>
L7	(pi,xd,od,dci,td pi,xi,oi,dcd,ti)	2	4	12-15	2	with order number L1
			4	38-40	1	

<u>T-pattern with the order number L1 (np,xd,oi,ddd,ti pd,xd,oi)</u>, has 2 ocurrences; in the third bout (<u>semifinal</u>). First ocurrence: fencing phrases nº 42 y 43; second ocurrence: fencing phrases nº 52 y 53. On bouth ocurrences, fencing phrases are consecutive (no fencing phrases interpersed).

T-Pattern

MECAPON

(pd,xd,oi,ddd pd,xd.od,dci,td)

T-pattern with order number L3

World champion in 2014 (Fencer on the right)

Total: 44 categories; 121 events-type= fencing phrasetypes ; 281 events= fencing phrases recorded

Bout 1: 24 categories, 47 eventstype= fencing phrase-types, 66 fencing phrases

Bout 3: 28 categories, 47 fencing phrase-types, 60 fencing phrases

Bout 2: 26 categories, 47 fencing phrase-types, 56 fencing phrases

Bout 4: 27 categories, 28 fencing phrase-types, 33 fencing phrases

1 1 1 1 10

ES 🔺 🔒 🍢 .al 🏟 🖏 15/07/2015

16:19

World champion in 2014 (Fencer on the right). T-Patterns detected

N⁰	Chain formt pattern	Ocurrences	Bout	fencing phrases	fencing phrases
				intra-bout	interspersed
R1	((np,xi,oi,ddd np,xi,od,dci) pi,xi,od,dci,td)	2	2	21-38-53	16, 14
			3	4-20-35	15, 14
R2	((pi,xd,oi np,xd,oi,dcd) pi,xd,oi,ddd)	2	2	6-20-24	13, 3
			3	30-48-51	17, 2
R3	(np,xd,oi,dcd pi,xd,oi,ddd)	2	2	20-24	3
			3	48-51	2
R4	(np,xi,od,dci pi,xi,od,dci,td)	2	2	39-53	13
			3	20-35	14
R5	(np,xi,od,ddi np,xi,od,ddi)	2	1	41-43	1
			1	43-45	1
R6	(np,xi,od,ddi,td pi,xi,od,ddi)	2	1	24-33	8
			3	16-25	8
R7	(np,xi,oi,dcd,tdi pi,xi,od,ddi,td)	2	1	6-14	7
			3	5-11	5
R8	(np,xi,oi,ddd pi,xi,oi,dcd,tci,ti)	2	1	1-19	17
			3	4-22	17
R9	(pd,xd,od,dci pi,xi,oi,dod,ti)	2	1	36-46	9
			4	7-14	6
R10	(pd,xd,od,ddi pd,od,ddi)	2	1	22-23	-
			1	51-52	-
R11	(pi,xd,oi,dcd np,xd,od,ddi)	2	1	21-28	6
			2	27-34	6
R12	(pi,xi,oi,dcd,ti np,xi,od,dci,td)	2	2	12-13	-
			3	59-60	-
R13	(pi,xi,oi,ddd pi,xi,od,dci,td)	2	2	28-53	24
			3	10-35	24
R14	(pi,xi,oi,dod,tid pi,xi,oi,dod,tid)	3	4	29-30	-
			4	30-31	-
			4	31-33	1

Lag sequential analysis (GSEQ)

Sub-champion of the World in 2013 (Fencer on the left)

							Pa	rticipan	tt 1 - Sub-	-champ	ion of the	World i	n 2013	(Fencer of	m the le	ft)						
				Right	touch (not favor p	articipar	it 1)							L	eft tou ch	(favor pa	rticipant	1)			
						Lags											Lags					
	-5	-4	-3	-2	-1	0	1	2	3	4	5	-5	-4	-3	-2	-1	0	1	2	3	4	5
Behaviors th	at FAVOF	R partici	pant 1																			
PD	-1,70	-0,77	0,63	-0,27	-0,70	0,52	-2,20 &	0,19	-1,20	-1,22	-0,79	-0,45	-0,04	-0,01	0,78	2,32 #	0,46	-0,33	-0,36	0,75	-0,42	1,06
XD	-0,06	-0,55	-1,04	0,79	-0,09	0,59	0.57	-0,11	1,67	-1,51	-1,98 &	0,43	0,01	2,56 #	0,01	1,14	1,45	-0,06	1,85	-0,04	1,41	0,26
OI	1,32	-0,03	0,44	0,41	0,44	-5,36 &	1,08	-0,91	0,82	-0,53	0,32	0,91	-0,95	-0,91	1,23	-1,99 &	6,73 #	0,91	1,59	0,46	0,06	-0,34
DCD	-0,56	-0,01	-0,54	0,02	-0,51	-2,73 &	0,46	-1,60	-0,54	-1,63	-1,10	0,80	-0,51	-0,49	0,42	-1,35	4,50 #	-0,01	-0,03	0,40	0,38	-0,09
DDD	2,45 #	0,88	0,40	0,85	-0,13	-3,19 &	0,23	-0,59	1,40	1,88	-0,07	-1,24	-0,88	-0,86	0,31	-0,49	2,42 #	0,34	0,82	-0,03	-0,47	0,84
DOD	1,43	-0,99	0,23	0,24	1,47	-1,00	1,40	0,24	1,45	0,23	3,85 #	0,67	0,68	-0,32	0,70	-1,31	2,73 #	-1,31	1,70	-1,32	1,68	-1,33
TOI	-0,80	-0,90	1,76	0,44	-0,89	-0,91	0,40	0,44	0,43	1,75	-0,90	1,36	0,98	-1,20	-1,20	-0,09	1,02	2,11 #	-1,20	3,19 #	-1,21	-0,12
Behaviors th	at NOT F	AVOR	participar	nt 1																		
NP	0,52	0,02	-0,47	0,40	0,36	-0,24	1,14	-1,35	0,50	1,00	-0,33	-0,90	-0,20	-0,63	-1,42	-2,59	-1,44	-0,65	-0,60	-0,92	-0,12	-1,58
XI	-0,08	0,87	2,74 #	-0,55	-0,58	-0,71	-0,22	1,31	-0,10	-0,06	-0,08	-0,11	1,45	-1,97 &	-0,11	0,60	-2,04 &	-0,47	-1,64	-0,52	-0,08	-0,11
DI	-0,40	-0,40	-0,40	-0,40	-0,39	-0,40	-0,40	-0,40	2,54 #	-0,40	-0,40	-0,54	-0,53	-0,53	-0,53	1,91	1,91	-0,53	-0,53	-0,53	-0,53	1,88
OD	-1,52	0,27	-0,20	-0,17	-0,21	5,60 #	-0,84	1,14	-1,46	0,33	-0,96	-0,59	1,27	1,23	-0,91	1,94	-6,78 &	-1,32	-1,64	-0,51	-0,11	0,30
DCI	-1,09	0,72	-0,54	0,07	-1,11	6,29 #	-0,02	1,85	-0,47	1,33	-1,09	-0,10	1,41	1,30	-0,65	1,83	-2,66 &	-0,14	0,34	0,93	-1,08	1,39
DDI	-1,49	-0,99	0,96	-0,47	0,93	1,27	-1,12	-0,05	-1,03	-1,47	-0,53	-0,21	0,61	1,04	-0,13	1,40	-4,54 &	-0,99	-1,80	-1,04	0,61	-1,00
DOI	-0,40	-0,40	-0,40	-0,40	-0,39	-0,40	2,50 #	-0,40	-0,40	-0,40	-0,40	1,88	-0,53	-0,53	-0,53	-0,53	-0,53	-0,53	-0,53	-0,53	-0,53	-0,54
TDD	-0,74	-0,73	1,56	0,78	0,00	-0,84	-0,07	-0,72	0,09	0,20	0,19	-0,07	0,62	-0,84	-0,83	-0,16	-2,12 &	-0,82	-0,03	-0,72	-0,60	0,78
TOD	-0,40	-0,40	-0,40	-0,40	-0,39	2,51 #	-0,40	-0,40	-0,40	-0,40	-0,40	-0,54	-0,53	-0,53	-0,53	1,91	-0,53	-0,53	-0,53	-0,53	-0,53	-0,54

Excitatory behavior (> 1.96)

Lag sequential analysis (GSEQ)

1 1 1 1 m

World champion in 2014 (Fencer on the right)

					R	light to	uch	(favor	part	tici pa nt	2)							Left t	ouch (not	favor part	ici pa nt	2)			
								Lags											Lag	55					
	-5	-4	-3	-2		-1		0		1	2	3	4	5	-5	-4	-3	-2	-1	0	1	2	3	4	5
Behaviors that I	FAVOR	artici pa	int 2																						
NP	0,81	-1,48	-0,80	-1,93		-1,53		-0,74		-1,08	2,05 #	0,29	-0,05	-0,40	-1,66	-1,64	-2,45	& 1,29	-0,35	-1,57	-0,70	-0,66	1,06	-1,84	0,31
PD	-1,45	0,30	0,65	0,67		1,54		1,56		-0,18	-1,48	-0,55	0,30	-0,15	0,91	0,47	0,48	-0,90	-0,88	-2,27 &	-0,88	-0,43	-2,30 &	0,00	-0,94
OD	-1,39	1,15	-0,79	-0,46		1,69		6,32	#	-0,43	-0,75	1,60	0,20	-0, 19	0,10	0,13	-0,99	-0,64	-1,37	-6,32 &	-1,37	-0,20	-1,32	-0,14	0,60
DCI	-1,75	1,54	-0,40	0,08		-0,37		2,44	#	-0,37	0,17	-0,24	-1,61	0,77	0,16	0,68	-1,32	0,70	0,21	-2,81 &	0,72	0,79	-1,26	-0,70	-0,20
DDI	0,36	-0,39	-0,87	-1,67		1,39		3,69	#	-0,51	-0,53	2,32 #	1,53	-0,73	-0,07	-0,46	0,79	-0,89	-1,29	-4,15 &	-1,70	-0,89	-1,27	-0,46	0,82
DOI	-0,24	-1,25	1,73	0,74		-0,25		2,77	#	-1,26	-0,26	-0,23	-0,24	1,77	-0,05	-1,13	-1,12	-1,12	-1,12	-1,11	-1,12	-0,04	-0,04	-0,05	-1,13
TCD	-0,01	0,66	-1,36	-1,35		0,63		1,96	#	-0,03	1,28	0,67	-0,67	-0,01	0,33	-1,09	-0,37	-1,07	-0,35	-1,78	1,07	0,35	-1,08	0,33	-1,80
Behaviors that I	FAVOR	artici pa	int 2																						
PI	0,64	1,32	0,04	0,72		-0,02		-0,35		0,68	-0,76	0,44	-0,31	0,74	0,58	1,31	1,67	-0,29	0,45	3,55 #	1,22	0,81	1,17	1,91	0,73
XI	0,97	-0,49	-0,69	-2,14	&	1,01		-0,37		0,37	-0,73	-1,24	-0,92	-0,17	-2,07 &	-0,18	0,94	-0,24	0,11	3,20 #	0,55	-0,24	2,09 #	0,14	0,56
a	1,72	-0,83	0,40	0,07		-2,09	&	-6,32	&	0,10	0,78	-1,58	-0,18	0,22	-0,19	0,16	0,90	0,92	0,89	6,68 #	1,33	0,15	1,28	0,49	-0,25
DCD	1,06	-0,21	-0,71	1,01		-0,68		-3,65	8	-0,25	1,44	-1,05	-1,07	0,63	0,38	-0,07	0,41	-0,04	0,90	7,39 #	1,36	-0,04	0,41	1,31	-1,00
DDD	0,77	-1,61	0,71	-0,22		-0,69		-3,06	8	0,36	-0,62	-1,53	0,88	-0, 59	-0,71	0,84	0,34	0,36	0,88	0,38	-0,59	0,96	2,50 #	-0,63	0,92
та	0,85	-1,58	0,01	2,44	*	-0,78		-1,58		0,03	-0,79	-1,57	-0,77	0,85	-0,56	-1,42	-1,42	-1,42	0,34	5,60 #	0,34	-0,54	2,07 #	-1,42	-0,56
TOD	-0,94	-0,94	1,68	-0,95		0,37		0,38		-0,94	1,68	-0,93	-0,94	-0,94	1,98 #	1,99 #	-0,84	0,58	0,59	0,59	0,59	0,58	0,58	-0,84	1,98 #

Participant 2 - Champion of the World in 2014 (Fencer on the right)

Polar coordinate analysis (HOISAN)

Sub-champion of the World in 2013 (Fencer on the left)

Right touch (focal behaviour: TD)

Favor participant 1:

- a) PD Opponent (right) pressure III
- b) DCD 2nd action: Opponent (right) counteroffensive – III

Not favor participant 1:

- a) PI Own (left) pressure I
- b) DDD 2nd action: Opponent (right) defensive- I
- c) DOD 2nd action: Opponent (right) offensive- I

Left touch (focal behaviour: : TI)

and the second

Favor participant 1 :

- a) PI Own (left) pressure I
- b) XD Opponent (right) preparation- I
- c) OD 1st action: Opponent (right) offensive II
- d) DDI 2nd action: Own (left) defensive- II

Not favor participant 1:

a) NP - No pressure - III

Polar coordinate analysis (HOISAN)

World champion in 2014 (Fencer on the right)

Right touch (Focal behaviour : TD)

Favor participant 2:

Not favor participant 2:

 a) NP - No pressure inhibits the favorable touche (TD) and when it touches (TD) NO PRESSURE behaviors are activated – IV

Left touch (Focal behaviour : TI)

Favor participant 2 :

- a) NP No pressure III
- b) DOI 2nd action: Opponent (left) offensive III
- c) TCI 3rd action: Opponent (left) counteroffensive III

Not favor participant 2:

- a) PI Opponent (left) pressure I
- b) PD Own (right) pressure II
- c) TOD 3rd action: Own (right) offensive I

Complementary evaluation of tactical sequences for fencers 1 and 2

T-Patterns	L	ags	Polar co	ordinate
Behaviors that FAVOR participant 1 (Fencer on the left)				
(NP,XD,OI,DDD,TI PD,XD,OI)	PD	DDD	PD	OD
(PI,XD,OD,DCI,TD PI,XI,OI,DCD,TI)	XD	DCD	PI	DCD
	OI	TOI	XD	DDI
Behaviors that DO NOT FAVOR participant 1 (Fencer on the le	eft)			
(NP,XLOD,DCI,TD NP,XLOD,DDI,TDD)	NP	DDI	NP	
(PD,XD,OI,DDD PD,XD,OD,DCI,TD)	XI	DOI	PI	
(PI,XD,OD,DCI,TD PI,XI,OD,DDI)	DI	TDD	DDD	
(PI,XD,OD,DCI,TD PI,XI,OI,DCD,TI)	OD	TOD	DOD	
	DCI			
Behaviors that FAVOR participant 2 (Fencer on the right)				
((NP,XI,OLDDD NP,XI,OD,DCI) PI,XI,OD,DCI,TD)	NP	DDI	NP	
(NP,XI,OD,DCI PI,XI,OD,DCI,TD)	PD	DOI	DOI	
(NP,XI,OD,DDI,TD PI,XI,OD,DDI)	OD	TCD	TCD	
(NP,XI,OI,DCD,TDI PI,XI,OD,DDI,TD)	DCI			
(PI,XI,OLDCD,TI NP,XI,OD,DCI,TD)				
(PLXI,OLDDD PLXI,OD,DCI,TD)				
Behaviors that DO NOT FAVOR participant 2 (Fencer on the ri	ight)			
(NP,XI,OI,DDD PI,XI,OI,DCD,TCI,TI)	PI	DDD	NP	
(PD,XD,OD,DCI PI,XI,OI,DOD,TI)	XI	TCI	PI	
	IO	TOD	PD	
	DCD		TOD	

Discussion and conclusion

The main conclusion of this study is that the complementary use of the three observational methodology techniques—lag sequential analysis, polar coordinate analysis, and Tpattern detection— can provide extremely useful insights that can be used to guide tactical and strategic training in fencing.

 A) Each dataset corresponds to a fencing phrase, which could be considered as a "<u>co-</u> <u>occurrence</u>" of behaviors or actions but that actually presents <u>internal or intra-phrase</u> <u>sequentiality</u>.

VEN

The main conclusion of this study is that the complementary use of the three observational methodology techniques—lag sequential analysis, polar coordinate analysis, and Tpattern detection— can provide extremely useful insights that can be used to guide tactical and strategic training in fencing.

B) The strategical analysis shows how co-occurrences or events (fencing phrases) influence each other (via T-patterns), and it also shows how different behaviors (actions) influence previous or subsequent behaviors (using sequential analysis of lags -1 to -5 and +1 to +5 and polar coordinate analysis).

VEN

INEFC Barcelona

FENCING RESEARCH

Thank you

Xavier Iglesias xiglesias@gmail.com http://inefcresearch.wordpress.com http://inefcgiseafe.com/

We gratefully acknowledge the support of :

- Two Spanish government projects: La actividad física y el deporte como potenciadores del estilo de vida saludable: Evaluación del comportamiento deportivo desde metodologías no intrusivas (Secretaría de Estado de Investigación, Desarrollo e Innovación del Ministerio de Economía y Competitividad) during the period 2016-2018 [Grant DEP2015-66069-P], and Avances metodológicos y tecnológicos en el estudio observacional del comportamiento deportivo (Secretaría de Estado de Investigación, Desarrollo e Innovación del Ministerio de Economía y Competitividad) during the period 2015-2017 [Grant PSI2015-71947-REDT].
- Institut Nacional d'Educació Física de Catalunya INEFC (University of Barcelona).
- Aid for research groups of AGAUR Government of Catalonia (SGR 971, SGR 1665 and SGR 1240).
- Catalan Fencing Federation and fencing masters who have contributed at the various phases of the project.

Si no se especifica lo contrario, el contenido de esta obra está sujeta a una licencia de <u>Reconocimiento-NoComercial-Compartidolgual</u> <u>3.0 España de Creative Commons</u>

Algunas imágenes de la presentación, han sido obtenidas de recursos en línea y se ha indicado expresamente su fuente. Dada la gran diversidad de sitios web que hay es difícil conocer la autoría de las mismas. Si los/las autores/as desean su reconocimiento o eliminación, no tienen más que indicarlo y se procederá.