22nd ECSS Annual Congress 2017

Mixed linear modelling of trainingperformance relationship in elite swimmers

Rodríguez F.A., Susín A., Calle M.L., Chaverri D., Iglesias X.

Introduction

- Banister, Calvert et al. first applied systems theory to quantifying the relationship between training and performance
- Busso et al. improved model accuracy by accounting for trainingrelated changes on fatigue
- However, systems models have been unable to consistently predict performance on an individual basis in a "real-world" setting

- To evaluate the modelling of the dose-response relationship between quantified training and performance with linear mixed-effects regression analysis (MixMod) in high-level competitive swimmers
- To compare the goodness-of-fit and robustness of the model with classical individual linear modeling (LinMod)

Methods

- International-level swimmers (n=10)
- Training monitoring during an 8-week mesocycle

Training monitoring

- Timing: TX H2O (Freelap) beacon transmitters (50-m laps)
- HR: Water: CardioSwim monitors synced with beacons
 Dryland: Polar RS800CX monitors
- Cummulative training impulse (TRIMPc*)

Training monitoring

• Timing: TX H2O (Freelap) beacon transmitters (50-m laps)

• Heart rate:

Water: CardioSwim monitors synced with beacons Dryland: Polar RS800CX monitors

• Cummulative training impulse (TRIMPc*)

ratio

HR

max

$$TRIMPc = \sum_{i=1}^{n} tk_1 x \begin{cases} \text{for men} = k_1 = 0.64e^{1.92x} \\ \text{for women} = k_1 = 0.86e^{1.67x} \end{cases}$$
$$x = AHR = \frac{HR_{\text{exercise}} - HR_{\text{rest}}}{1.67x}$$

rest

* García-Ramos et al. (2015) Eur J Sport Sci

Performance testing

Time trials:

50 and 400 m freestyle

100 m (sprinters) or 200 m (non-sprinters) best stroke

- Banister-Busso* individual linear regression model (LinMod)
- Linear mixed-effects regression analysis model (MixMod) fixed-effects parameters: general / sample pattern random-effects parameters: individual specific behaviour

Banister-Busso linear model

 $\hat{p}(n) = p^* + k_1 \cdot Fitness(\tau_1, w, n) + k_3 \cdot Fatigue(\tau_2, \tau_3, w, n)$

$$\hat{p} = p^* + k_1 \sum_{i=1}^{n-1} w^i e^{-\frac{n-i}{\tau_1}} - \sum_{i=1}^{n-1} k_2^i w^i e^{-\frac{n-i}{\tau_2}} k_2^i = k_3 \sum_{j=1}^{i} w^j e^{-\frac{i-j}{\tau_3}}$$

Banister et al (1991); Busso (2003)

Mixed linear model (MixMod)

$$y_{i}(t) = \beta_{0} + b_{i0} + (\beta_{1} + b_{i1}) \cdot x_{1}(t) + (\beta_{2} + b_{i2}) \cdot x_{2}(t)$$

$$\hat{p} = p^{*} + k_{1} \sum_{i=1}^{n-1} w^{i} e^{-\frac{n-i}{\tau_{1}}} - k_{3} \sum_{i=1}^{n-1} \sum_{j=1}^{i} w^{j} e^{-\frac{n-i}{\tau_{2}}}$$

$$\beta_{0}, \beta_{1}, \beta_{2} = \text{fixed (sample) effects}$$

$$b_{i0}, \beta_{i1}, \beta_{i2} = \text{random (individual) effects}$$

- Akaike Information Criterion (AIC) for model comparison
- Mean absolute percentage error (MAPE) to assess the relationship between estimated and observed performance
- **'Leave-one-out' cross-validation (LOO-CV)** for internal validation
- Overfitting of the model estimated from the ratio: RSS*(LOO-CV)–RSS(Apparent) / RSS(LOO-CV)
- Significance level: P < 0.05

Results & discussion

Model fitting (LinMod)

Subject	Tests	$ au_1$	$ au_2$	$ au_3$	p *	k ₁	k ₂	r ²
1	4	60	18	6	90.1	0.013	-0.00002	1.000
2	5	11	15	2	40.4	0.285	-0.00066	1.000
3	9	27	30	3	79.0	0.067	-0.00018	0.779
4	5	11	7	10	50.0	0.134	-0.00015	1.000
5	7	19	30	1	99.0	0.041	-0.00016	0.193
6	7	6	7	2	56.6	0.25	-0.00043	0.678
7	7	8	9	2	57.7	0.436	-0.00097	0.982
8	5	5	5	1	93.6	0.309	-0.00151	0.921
9	8	11	3	2	72.3	0.024	-0.00017	0.556
10	5	54	24	4	26.4	0.603	-0.00157	1.000
Mean	6.2	21.2	14.8	3.3	66.5	0.126	-0.00058	0.811
SD	1.6	20.0	10.3	2.8	24.2	0.197	0.00058	0.269

Model fitting (MixMod)

30 40

50

60

60

10 20

	Subject	Tests	p *	k 1	k ₂	r ²
	1	4	90.86653	0.00138	-0.43183	
	2	5	78.81936	0.02137	-3.21892	
	3	9	82.51912	0.01523	-2.36298	
	4	5	67.37463	0.04036	-0.58666	
	5	7	89.76855	0.00320	-0.68585	
	6	7	79.08181	0.02093	-3.15820	
	7	7	83.81238	0.01308	-2.06379	
	8	5	87.48704	0.00698	-1.21366	
	9	8	68.82400	0.03795	-5.53132	
	10	5	88.23705	0.00574	-1.04015	
	Mean	6.2	90.86653	0.00138	-0.43183	
	SD	1.6	78.81936	0.02137	-3.21892	

	MAPE (%)	RSS(Apparent)	RSS(LOO-CV)	Overfitting (%)
LinMod	6.6	1513	11982	87.4
MixMod	6.8	4998	6009	16.8

Conclusions

- The usual strategy for fitting the classical Busso-Banister model can be affected of an extreme overfitting
- This arises from the high number of observations per parameter needed (ca. 60 performance data points per individual)

- Another important limitation is that the adjustment is performed ignoring the correlation between the different observations on the same individual
- MixMod reduces overfitting because time parameters are common for all individuals (fixed-effects parameters) and are jointly estimated individual predictions (random-effects parameters)

