July 6-9, 2016 · Vienna

Oxygen uptake and blood lactate in full and fractionated synchronized swimming duet routines in elite swimmers

Rodríguez FA, Chaverri D, Rodríguez-Zamora L, Carrasco M, Irurtia A, Iglesias X

Introduction

 Synchronized swimming imposes great physiological demands by intense muscular exercise body position changes prolonged apneas (Rodríguez-Zamora et al., PloSOne 2012)

Introduction

- Oxygen uptake (VO₂) and blood lactate (La_b) have traditionally been used as key indicators to assess the internal load in sports
- Apneic events may have an impact on exercise metabolism
- No studies have examined VO₂ or energy metabolism during competitive routines

- To describe the time course of VO₂ and La_b across full and fractionated competitive routines in elite swimmers
- To ascertain the effect of apneas over these metabolic parameters

Design

Methods

Subjects

- 16 elite senior & junior swimmers
- Age 16.5 ± 2.5 yrs
- Height 165 \pm 7 cm
- Body mass 53 \pm 8 kg

Testing

- Peak VO₂ by backward extrapolation of first 30 s postexercise (Cosmed K4 b²)
- Serial (min 3, 5, 7) capillary blood samples for La_b (DiaglobalDP100)
- RPE (Borg CR-10 scale)

Blood lactate, RPE

Oxygen uptake

Discussion

- Continuous measurement of VO₂ and La_b during SS routines is not possible due to immersion phases
- The fractionation strategy allowed us to study the time course of these parameters across competitive duet routines
- VO₂ showed a moderately fast rate of increase during exercise (τ = 33.9 s, e.g. ~90% VO_{2peak} after 1 min)

Discussion

- No differences noted in VO₂ or La_b before and after prolonged apneas
- The rate of VO₂ increase and La_b accumulation seem to be caused
 - essentially by the high energy demands of exercise
 - not by prolonged apneas despite the dramatic effect on HR

