

PERCEIVED EXERTION, TIME OF IMMERSION, AND PHYSIOLOGICAL CORRELATES IN ELITE SYNCHRONIZED SWIMMING DURING COMPETITION

Rodríguez-Zamora L, Iglesias X, Irurtia A, Barrero A, Chaverri D, Rodríguez FA INEFC – Universitat de Barcelona

Generalitat de Catalunya Departament de la Presidència Secretaria General de l'Esport

Introduction

Synchronized Swimming

- Difficulty to asses physiological parameters i
- Recent report on HR, lactate and RPE durin competition (Rodríguez-Zamora 2012)
- RPE seems a useful tool to monitor internal

• Distorting influence of hypoxia due to respiratory afferent input (Shephard et al. 1992)

- Is RPE an appropriate tool to assess the internal load during solo and duet?
- Which parameters can best explain RPE during SS competitive routines?

Hypotheses

- RPE is influenced by duration and frequency immersion thus influencing the relationships between RPE and other load markers (HR and lactate)
- Diving bradycardia will modify swimmers' perceived exertion

	n = 17
Height (cm)	165.1 ± 6.3
Body Mass (kg)	52.4 ± 5.5
Age (years)	17.9 ± 3.5
Training (h·week ⁻¹)	37.4 ± 6.4
Sports- Specific practice (yrs)	9.8 ± 3.1

Values are mean ± SD

Platform						
Corridor V	Competitive Routine			Post		
5'	$(\sim 2.00 - 3.30 \text{ min:s})$	▲ (~30")	 2'	י טאנ ג'	 7'	10'
Resting Lactate	(* 2.00 - 5.50 mm.s)	T ▲	^		, 个	^
		TCS		Lactate	Sampling	-
٨		RPE				٨
	Heart Rate Moni	itoring				

Method

Recorded images were decoded and registered with **free software** (LINCE, version 1.1)

Face-in

	n = 17
NIM	Number of Immersions
ТІМ	Time of Immersion
МІМ	Mean time of Immersion
RIM%	% of the routine immersed
IMmax	Maximum Immersion
NIM>10s	NIM longer than 10s
TIM>10s	TIM over 10s

	Routines (n=30)
Lapeak (mmol·L ^{-I})	7.0 ± 1.8 *
NIM (times)	24.4 ± 6.9 *
TIM (s)	100.1 ± 18.8 *
MIM (s)	4.3 ± 0.9
RIM% (duration)	61.2 ± 6.0
IMmax (s)	20.6 ± 4.1
NIM>10s (times)	4.1 ± 1.3 *
TIM>I0s (s)	61.1 ± 18.0

Values are mean \pm SD.

* Significant differences among routines (TS, FS, TD, FD)

- Moderate La_{peak} suggesting

 low activation of glycolysis (Brooks 1991)
 specific metabolic adaptations (Smith 1988)
- Free routines and duets (2:20–3:30 vs. 2-3 min:s) imply

 –a higher number of immersions (NIM>10s)
 –for longer time (TIM>10s)
- This is consistent with previous reports during training (Homma 1994, 1999)

RPE score vs. lactate

RPE score vs. Minimum Heart Rate

RPE score vs. Immersion

MLR in Estimating RPE

- Hierarchical multiple linear regression (MLR) model
- Four variables explained 62% RPE (adj. R_m²=0.62; P<0.001):

NIM>10s HR_{min} and HR_{post5} La_{peak} RPE = 4.23 + 0.03 TIM>10s + 0.02 HR_{post5} - 0.01 HR_{min} + 0.09 La_{peak}

- NIMIO s and HR_{min} reflects the influence of long immersions and the subsequent bradycardia
- HR_{post5} and La_{peak} may reflect a training adaptation

 CR-10 RPE scale used independently is not a good tool for monitoring internal load when peak lactate or HR alone are used as criterion variables

 Prolonged and frequent immersions and intense exercise explain changes in RPE

 Cardiorespiratory factors seem to provide a relatively greater neural input as compared to metabolic factors

Thank you.

Generalitat de Catalunya Departament de la Presidència Secretaria General de l'Esport

