

MUSCLE OXYGEN SATURATION BREAKPOINTS AS PREDICTORS OF VENTILATORY THRESHOLDS IN TRIATHLETES

Generalitat de Catalunya

Fernández-Jarillo, I¹; Montraveta, J¹; McManus, J.C²; Chaverri, D¹; Iglesias,X¹

¹National Institute of Physical Education of Catalonia (INEFC), University of Barcelona ² University of Essex

Introduction

To optimize endurance training, individualized training zones should be determined based on physiological thresholds. NIRS technology has made it possible to non-invasively assess muscle oxygen saturation during physical exercise. Four phases of muscle oxygenation dynamics during incremental exercise have been documented [1]. This predictive behaviour has led to the comparison of ventilatory thresholds (VT) with SmO₂ thresholds (BP). The aim of the study was: to evaluate the relationship between ventilatory thresholds (BP₁ and BP₂) in triathletes during a running incremental test.

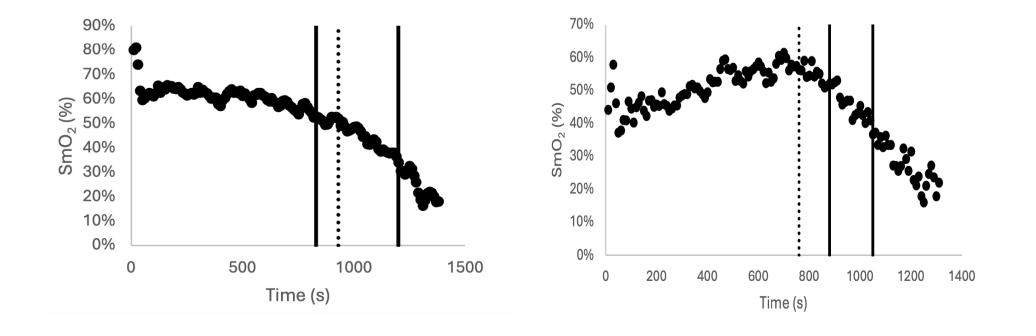
BP and VT did not show significant differences when compared based on HR (VT₁ 165.2 ± 14.9 bpm; BP₁ 164.2 ± 18.7 bpm p= 0.771 and VT₂ 168.8 ± 19.4 bpm; BP₂ 171.3 ± 14.4 bpm p= 0.504), VO₂ (VT₁ 51.3 ± 6.3 ml·kg⁻¹·min⁻¹; BP₁ 52.5 ± 7.6 ml·kg⁻¹·min⁻¹ p= 0.471 and VT₂ 58.1 ± 6.3 ml·kg⁻¹·min⁻¹; BP₂ 59 ± 4.6 ml·kg⁻¹·min⁻¹ p= 0.349), velocity (VT₁ 15.1 ± 1.1 km·h⁻¹; BP₁ 14.9 ± 1.5 km·h⁻¹ p= 0.614 and VT₂ 17.9 ± 0.6 km·h⁻¹; BP₂ 17.9 ± 1.1 km·h⁻¹ p= 1.000) and SmO₂ (VT₁ 40.4 ± 19.1 %; BP₁ 43.3 ± 13.2 % p= 0.279 and VT₂ 11.9 ± 20 %; BP₂ 9.4 ± 17.6 % p= 0.171). The results of the Bland Altman plots for the first threshold displayed a low mean error but a wide 95% CI while for the second

Methods

Twelve national level triathletes (age 24 \pm 5; VO_{2max} $61.5 \pm 8.4 \text{ ml} \cdot \text{min}^{-1} \cdot \text{kg}^{-1}$; ATT $3.6 \pm 1.4 \text{ mm}$; SmO_{2end} $16.4 \pm 13\%$) were assessed during a VAM EVAL test. Breath by breath gas exchange was recorded using a portable gas analyser (Cosmed K5), SmO₂ was measured using a continuous wave NIRS device (MOXY) placed on the right vastus lateralis, and heart rate was recorded using a chest strap (Polar H10). BP were determined using a piecewise double linear regression model because this model provided a superior fit in over 90% of the cases [2]. A paired samples t-test was performed to compare the VO₂, HR, SmO₂ and velocity at the VT – BP. Bland Altman Plots were performed to assess the agreement between VT_1 - BP_1 and VT_2 - BP_2 with upper and lower LoA set at 95% CI. A stepwise multiple linear regression analysis was performed among the variables associated with SmO_2 : BP₁ and SmO2end (SmO2 at the end of the ramp test) and VT_1 and VT_2 to determine which combination yielded the highest predictive accuracy.

Results

threshold, the low mean error was coupled with a much narrower 95%. The multiple linear regression analysis displayed the most suitable equations to predict the VT₁ and VT₂ from the SmO₂ data (HR, velocity and SmO₂ at the BP₁ and SmO₂ at the end of the test). Our results indicated the following prediction percentage: 93% SmO₂ VT₁ and 92% SmO₂ VT₂. The relevant equations are shown:


 $SmO_2 VT_1(\%) = -85.207 + (1.366 * SmO_2 BP_1) + (4.463 * velocity BP_1) (Eq. 1)$ $SmO_2 VT_2(\%) = 5.949 + (1.337 * SmO_{2end}) (Eq. 2)$

Discussion

The relationship between BP and VT exhibited considerable variability among participants. In some, these thresholds occurred nearly simultaneously, while in others, there was a noticeable separation, indicating that this relationship is highly individualised. The inability to detect a clear second breakpoint (BP₂) in most participants highlights the challenge of using SmO₂ as a standalone marker for performance thresholds. While BP₁ often coincided with VT₁, the varied SmO₂ profiles suggest that a range of physiological factors, including muscle fibre recruitment strategies and overall aerobic capacity, place.

The SmO₂ reflected changes due to the increased velocity during the VAM EVAL test and different SmO_2 behaviours could be identified: ten monotonic (Fig 1a) & two parabolic (Fig 1b).

Figure 1. SmO2 responses. Monotonic decrease (a) and parabolic variation (b). Solid lines represent the VT and dashed lines the BP.

References

Bhambhani, Y. (2004, Aug). *Can J Appl Physiol*, 29(4), 504-523.
Murias, J. et al. (2013, Dec). *Respir Physiol Neurobiol*, 189 (3) 530-536.
Boone, J., et al. (2016, Dec). *Eur J Appl Physiol*, 116(11-12), 2085-2102.

play a significant role in determining these thresholds [3]. Consequently, SmO_2 alone may not provide a comprehensive picture of an athlete's performance potential or the precise point of metabolic transition.

Conclusions

The findings of this study suggest that SmO₂ thresholds identified by NIRS can serve as reliable predictors of ventilatory thresholds in highly trained athletes, despite the variability in individual muscle oxygen saturation responses. This approach holds potential for optimising performance assessment and training regimens in high-level athletes.

